dcase_util.data.Normalizer

class dcase_util.data.Normalizer(n=None, s1=None, s2=None, mean=None, std=None, **kwargs)[source]

Data normalizer to accumulate data statistics

__init__ method.

Parameters
nint

Item count used to calculate statistics Default value None

s1np.array [shape=(vector_length,)]

Vector-wise sum of the data seen by the Normalizer Default value None

s2np.array [shape=(vector_length,)]

Vector-wise sum^2 of the data seen by the Normalizer Default value None

meannp.ndarray() [shape=(vector_length, 1)]

Mean of the data Default value None

stdnp.ndarray() [shape=(vector_length, 1)]

Standard deviation of the data Default value None

__init__(n=None, s1=None, s2=None, mean=None, std=None, **kwargs)[source]

__init__ method.

Parameters
nint

Item count used to calculate statistics Default value None

s1np.array [shape=(vector_length,)]

Vector-wise sum of the data seen by the Normalizer Default value None

s2np.array [shape=(vector_length,)]

Vector-wise sum^2 of the data seen by the Normalizer Default value None

meannp.ndarray() [shape=(vector_length, 1)]

Mean of the data Default value None

stdnp.ndarray() [shape=(vector_length, 1)]

Standard deviation of the data Default value None

Methods

__init__([n, s1, s2, mean, std])

__init__ method.

accumulate(data[, time_axis])

Accumulate statistics

delimiter([exclude_delimiters])

Use csv.sniffer to guess delimiter for CSV file

detect_file_format([filename])

Detect file format from extension

empty()

Check if file is empty

exists()

Checks that file exists

finalize()

Finalize statistics calculation

get_file_information()

Get file information, filename

is_package([filename])

Determine if the file is compressed package.

load([filename])

Load file

log([level])

Log container content

normalize(data, **kwargs)

Normalize data matrix with internal statistics of the class.

plot([plot, figsize])

Visualize normalization factors.

reset()

Reset internal variables.

save([filename])

Save file

show([mode, indent, visualize])

Print container content

to_html([indent])

Get container information in a HTML formatted string

to_string([ui, indent])

Get container information in a string

validate_format()

Validate file format

Attributes

bytes

File size in bytes

logger

Logger instance

md5

Checksum for file.

mean

Mean vector

std

Standard deviation vector

valid_formats

Valid file formats