dcase_util.processors.NormalizationProcessor
- class dcase_util.processors.NormalizationProcessor(n=None, s1=None, s2=None, mean=None, std=None, normalizer=None, filename=None, **kwargs)[source]
Data normalizer to accumulate data statistics
__init__ method.
- Parameters
- nint
Item count used to calculate statistics Default value None
- s1numpy.array [shape=(vector_length,)]
Vector-wise sum of the data seen by the Normalizer Default value None
- s2numpy.array [shape=(vector_length,)]
Vector-wise sum^2 of the data seen by the Normalizer Default value None
- meannumpy.ndarray() [shape=(vector_length, 1)]
Mean of the data Default value None
- stdnumpy.ndarray() [shape=(vector_length, 1)]
Standard deviation of the data Default value None
- normalizerNormalizer
Normalizer object to initialize the processor Default value None
- filenamestr
Filename to saved normalizer object to initialize the processor Default value None
- __init__(n=None, s1=None, s2=None, mean=None, std=None, normalizer=None, filename=None, **kwargs)[source]
__init__ method.
- Parameters
- nint
Item count used to calculate statistics Default value None
- s1numpy.array [shape=(vector_length,)]
Vector-wise sum of the data seen by the Normalizer Default value None
- s2numpy.array [shape=(vector_length,)]
Vector-wise sum^2 of the data seen by the Normalizer Default value None
- meannumpy.ndarray() [shape=(vector_length, 1)]
Mean of the data Default value None
- stdnumpy.ndarray() [shape=(vector_length, 1)]
Standard deviation of the data Default value None
- normalizerNormalizer
Normalizer object to initialize the processor Default value None
- filenamestr
Filename to saved normalizer object to initialize the processor Default value None
Methods
__init__([n, s1, s2, mean, std, normalizer, ...])__init__ method.
delimiter([exclude_delimiters])Use csv.sniffer to guess delimiter for CSV file
detect_file_format([filename])Detect file format from extension
empty()Check if file is empty
exists()Checks that file exists
get_file_information()Get file information, filename
get_processing_chain_item()Get processing chain item with current Processor data.
is_package([filename])Determine if the file is compressed package.
load([filename])Load file
log([level])Log container content
process([data, store_processing_chain])Normalize feature matrix with internal statistics of the class
save([filename])Save file
show([mode, indent, visualize])Print container content
to_html([indent])Get container information in a HTML formatted string
to_string([ui, indent])Get container information in a string
validate_format()Validate file format
Attributes
bytesFile size in bytes
input_typeInput data type
loggerLogger instance
md5Checksum for file.
output_typeOutput data type
valid_formatsValid file formats