dcase_util.tfkeras.create_sequential_model
- dcase_util.tfkeras.create_sequential_model(model_parameter_list, input_shape=None, output_shape=None, constants=None, return_functional=False)[source]
Create sequential Keras model
Example parameters:
model_parameter_list = [ { 'class_name': 'Dense', 'config': { 'units': 'CONSTANT_B', 'kernel_initializer': 'uniform', 'activation': 'relu' } }, { 'class_name': 'Dropout', 'config': { 'rate': 0.2 } }, { 'class_name': 'Dense', 'config': { 'units': 'CONSTANT_A' * 2, 'kernel_initializer': 'uniform', 'activation': 'relu' } }, { 'class_name': 'Dropout', 'config': { 'rate': 0.2 } }, { 'class_name': 'Dense', 'config': { 'units': 'CLASS_COUNT', 'kernel_initializer': 'uniform', 'activation': 'softmax' } } ] constants = { 'CONSTANT_A': 50, 'CONSTANT_B': 100 }
- Parameters
- model_parameter_listdict or DictContainer
Model parameters
- input_shapeint
Size of the input layer Default value None
- output_shapeint
Size of the output layer Default value None
- constantsdict or DictContainer
Constants used in the model_parameter definitions. Default value None
- return_functionalbool
Convert sequential model into function model. Default value False
- Returns
- Keras model