dcase_util.tfkeras.StasherCallback
- class dcase_util.tfkeras.StasherCallback(epochs=None, manual_update=False, monitor='val_loss', mode='auto', period=1, initial_delay=10, save_weights=False, file_path=None, **kwargs)[source]
Keras callback to monitor training process and store best model. Implements Keras Callback API.
This callback is very similar to standard
ModelCheckpoint
Keras callback, however it adds support for external metrics (metrics calculated outside Keras training process).Constructor
- Parameters
- epochsint
Total amount of epochs Default value None
- manual_updatebool
Manually update callback, use this to when injecting external metrics Default value False
- monitorstr
Metric to monitor Default value ‘val_loss’
- modestr
Which way metric is interpreted, values {auto, min, max} Default value ‘auto’
- periodint
Save only after every Nth epoch Default value 1
- initial_delayint
Amount of epochs to wait at the beginning before quantity is monitored. Default value 10
- save_weightsbool
Save weight to the disk Default value False
- file_pathstr
File name for model weight Default value None
- __init__(epochs=None, manual_update=False, monitor='val_loss', mode='auto', period=1, initial_delay=10, save_weights=False, file_path=None, **kwargs)[source]
Constructor
- Parameters
- epochsint
Total amount of epochs Default value None
- manual_updatebool
Manually update callback, use this to when injecting external metrics Default value False
- monitorstr
Metric to monitor Default value ‘val_loss’
- modestr
Which way metric is interpreted, values {auto, min, max} Default value ‘auto’
- periodint
Save only after every Nth epoch Default value 1
- initial_delayint
Amount of epochs to wait at the beginning before quantity is monitored. Default value 10
- save_weightsbool
Save weight to the disk Default value False
- file_pathstr
File name for model weight Default value None
Methods
__init__
([epochs, manual_update, monitor, ...])Constructor
add_external_metric
(metric_label)get_best
()Return best model seen
get_operator
(metric)log
()Print information about the best model into logging interface
on_epoch_begin
(epoch[, logs])on_epoch_end
(epoch[, logs])on_predict_batch_begin
(batch[, logs])on_predict_batch_end
(batch[, logs])on_predict_begin
([logs])on_predict_end
([logs])on_test_batch_begin
(batch[, logs])on_test_batch_end
(batch[, logs])on_test_begin
([logs])on_test_end
([logs])on_train_batch_begin
(batch[, logs])on_train_batch_end
(batch[, logs])on_train_begin
([logs])on_train_end
([logs])set_external_metric_value
(metric_label, ...)Add external metric value
set_model
(model)set_params
(params)show
([mode, indent])Print information about the best model
to_html
([indent])Get information in a HTML formatted string
to_string
([ui, indent])Get information in a string
update
()Attributes
logger